Numerical Study of a 3D Eulerian Monolithic Formulation for Incompressible Fluid-Structures Systems
نویسندگان
چکیده
An algorithm is derived for a hyperelastic incompressible solid coupled with a Newtonian fluid. It is based on a Eulerian formulation of the full system in which the main variables are the velocities. After a fully implicit discretization in time it is possible to eliminate the displacements and solve a variational equation for the velocities and pressures only. The stability of the method depends heavily on the use of characteristic-Galerkin discretization of the total derivatives. For comparison with previous works, the method is tested on a three-dimensional (3D) clamped beam in a pipe filled with a fluid. Convergence is studied numerically on an axisymmetric case.
منابع مشابه
Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملA Monolithic Geometric Multigrid Solver for Fluid-Structure Interactions in ALE formulation
We present a monolithic geometric multigrid solver for fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates. The coupled dynamics of an incompressible fluid with nonlinear hyperelastic solids gives rise to very large and ill conditioned systems of algebraic equations. Direct solvers usually are out of question due to memory limitations, standard coupled iterative so...
متن کاملFinite element error estimation for quasi-Newtonian fluid-structure interaction problems
We consider a monolithic scheme for fluid–structure interaction problems involving an incompressible quasi-Newtonian fluid. The monolithic formulation is obtained using the Arbitrary Lagrangian Eulerian (ALE) method with matching conditions at the fluid–structure interface. The stability and error analysis are performed for the finite element approximation. Finally, some numerical experiments t...
متن کاملAn Energy stable Monolithic Eulerian Fluid-Structure Numerical Scheme *
The conservation laws of continuum mechanics, written in an Eulerian frame, do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions (FSI) are built. In this article such a...
متن کاملA Monolithic Ale Newton-krylov Solver with Multigrid-richardson-schwarz Preconditioning for Incompressible Fluid Structure Interaction
In this paper we study a monolithic Newton-Krylov solver with exact Jacobian for the solution of incompressible FSI problems. A main focus of this work is on the use of geometric multigrid preconditioners with modified Richardson smoothers preconditioned by an additive Schwarz algorithm. The definition of the subdomains in the Schwarz smoother is driven by the natural splitting between fluid an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017